Optimal robust reinsurance with multiple insurers

Emma Kroell!

Joint work with Sebastian Jaimungal® and Silvana Pesenti!
@ emma.kroell@mail.utoronto.ca, www.emmakroell.ca
! Department of Statistical Sciences, University of Toronto

26th International Congress on Insurance: Mathematics and Economics
July 4-7, 2023

E® Statistical Sciences NSERB
@ UNIVERSITY OF TORONTO ERSNE



Insurance Market

» Insurance market with n € N non-life insurance companies and a single reinsurer
over a finite time horizon [0, T]

E. Kroell July 5, 2023 2/16



Insurance Market

» Insurance market with n € N non-life insurance companies and a single reinsurer
over a finite time horizon [0, T]

» Reinsurer covers a portion of each insurer's losses and receives premium payments

» Insurers determine how much reinsurance to purchase; reinsurer sets prices

E. Kroell July 5, 2023 2/16



Insurance Market

» Insurance market with n € N non-life insurance companies and a single reinsurer
over a finite time horizon [0, T]

» Reinsurer covers a portion of each insurer's losses and receives premium payments
» Insurers determine how much reinsurance to purchase; reinsurer sets prices

» Stackelberg game: reinsurer is the leader and the insurers are the followers

Reinsurer

[Insurer 1} [Insurer 2} Insurer n
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Model

» Complete, filtered measurable space
(Qa]:¢F = (]:t)tE[O,T]) and n
equivalent probability measures
Py,...,P,
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Model

» Complete, filtered measurable space

E. Kroell

(Qa]:a]F = (]:t)tE[O,T]) and n
equivalent probability measures
Py,...,P,

Py, k € N :={1,...,n}, encapsulates
the k-th insurer’s belief of their losses
Insurers maximize their expected
utility under Py

Reinsurer maximizes their expected
wealth under a probability measure
Q¢, which accounts for the different
insurers’ models as well as uncertainty
about their accuracy
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Background

» Stackelberg games in reinsurance setting introduced by [CS18], [CS19]

» Adding ambiguity aversion as a scaled KL-penalty [HCW18a], [HCW18b]
» Reinvestment of profits by the reinsurer: [GVS20], [GLS23]
>

Ambiguity where insurer and reinsurer maximize their expected wealth [Cao+22a],
[Cao+22b]

» Two reinsurers in a tree or chain form, one insurer: [Cao+23]
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Background

» Stackelberg games in reinsurance setting introduced by [CS18], [CS19]
» Adding ambiguity aversion as a scaled KL-penalty [HCW18a], [HCW18b]
» Reinvestment of profits by the reinsurer: [GVS20], [GLS23]

» Ambiguity where insurer and reinsurer maximize their expected wealth [Cao+22a],
[Cao+22b]

» Two reinsurers in a tree or chain form, one insurer: [Cao+23]

Our setting:
» n insurers who maximize expected utility and are ambiguity neutral

P> A single reinsurer who maximizes expected wealth and is ambiguity averse
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Reinsurance contracts

Definition (Reinsurance Contract)
A reinsurance contract is characterised by a retention function r: R4 x A — R,
which is:

» non-decreasing in the first argument,

> satisfies 0 < r(z,a) < z, forall ze Ry, a€ A,

and a corresponding reinsurance premium pf: A x R, — R,.

For a tuple (a,c) € A x R, the reinsurer agrees to cover z — r(z, a) for a premium
pR(a, c), where c is the reinsurer’s safety loading.

Assumption
We consider retention functions that are continuous in the loss z and increasing and
almost everywhere differentiable in the control a.
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Reinsurance contracts

Example (Proportional reinsurance)

The insurer chooses the proportion a of the loss to retain:

r(z,a)=az, ac(0,1].
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Reinsurance contracts

Example (Proportional reinsurance)

The insurer chooses the proportion a of the loss to retain:

r(z,a)=az, ac(0,1].

Example (Excess-of-loss insurance)

The insurer chooses the retention limit a, beyond which the reinsurer covers any excess
losses:
r(z,a) = min{a, z}, acRy.
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Insurers

» Each insurer's loss process follows a Cramér-Lundberg model
» Claims of insurer-k arrive according to a Poisson process with intensity A\x € R
» Claim severity ~ F(-) non-negative

» Insurer's premium rate is given by the expected value principle with safety loading
0, >0

> The insurer’s control of the retention function ck := (t,k)sefo, 7] varies in time

» The k-th insurers’ wealth process Xy := (X k):ejo, 7] IS

t t o0
Xek = Xo.k +/ {p,’( — pf(au,k, ck)] du —/ / r(z, oy k)N(dz, du) .
0 o Jo
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Reinsurer

P Reinsurer sets the reinsurance premium rate for insurer-k using the expected value
principle with deterministic safety loading 7k := (7:,k)tefo, 7]

e}

p,’f(ak,nt’k) = (14 7ek) )\k/ [z — r(z,at,k)] Fi(dz).
0

> The reinsurer's wealth process Y := (Y})scpo, 7] is

t t o]
Ye= Yo+ Z/ PR (ks T k) du—/ / Z [z = r(z, cuk)] N(dz, du) .
0 0 Jo

keN keN

aggregate premia aggregate losses
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Insurer’s Problem

Insurer-k's Optimization Problem

Insurer-k seeks the contract parameters that attain the supremum

sup E* [—W—lke_WXT’k} .
areA

Proposition
For k € N and ¢ € R consider the following non-linear equation for a € A

/OOO Bar(z, a) {(1 +c)— ew(Zva)} Fi(dz) =0

and denote by a}:[c] its solution, if it exists.

Subject to a convexity condition, the process o , := a;f([m,k], t € [0, T], is the
optimal insurer-k's control in feedback form.
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Reinsurer’s probability measure
y

Definition (Reinsurer's compensator)

An admissible compensator for the reinsurer is a nonnegative, F-predictable random
field ¢ = (5t(+))eefo, 7] such that, for all t € [0, T], <¢(-) : Ry — Ry and

P« [exp (/OT/]R [1;,(?2()2)}2 N(dz,dt))] < 00, Vk e N.

We denote the set of admissible compensators by V.

Radon-Nikodym derivative from Py to Q°:

Z%Z = exp (/OT/]Rlog (;Z((ZZ))> N(dz, dt) — /OT/R [EZ((ZZ)) _ 1} vK(2) dz dt)
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Reinsurer’s Optimization Problem

Let insurer-k's demand for reinsurance be parameterised by af = [ i]. The
reinsurer seeks the contract parameters to attain

0 il
sup inf EY | Y+ = Z Tk Dk (Q° || Pk) |
neeseV £ keN

where
P ¢ represents the reinsurer's overall ambiguity aversion,

> 7 >0, k € N are weights satisfying >, \, 7 = 1.
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Theorem

The Stackelberg equilibrium is (a*, 7™, ¢*) where a* = (aJ{[ni‘], ...,al[n*]) and
n* = (ny,...,n,) are constants that satisfy a system of non-linear algebraic equations.

The optimal compensator is

$*(z,a™) = exp {5 Z (z—r(z,0%) } H ve(z)™

keN LeN
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Example: Excess-of-loss reinsurance



Two insurers with exponentially distributed losses

Suppose each insurer's loss is exponentially distributed with scale parameter
&k € (0, m|n{7 , 25 ), and that they each have intensity A\ > 0, for k =1, 2.

Then the Stackelberg equilibrium is given by

*(z) = vB(2) exp (e [(z - a?)+ +(z—a3)4]),

1 Jazs®
a = — log k=12,
Vk Ake” ak/gk [1—7k§k]

np = e —1, k=1,2,

where v& is the weighted geometric mean of the insurers’ compensators.
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Thank you for your attention!
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