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Insurance Market

▶ Insurance market with n ∈ N non-life insurance companies and a single reinsurer
over a finite time horizon [0,T ]

▶ Reinsurer covers a portion of each insurer’s losses and receives premium payments

▶ Insurers determine how much reinsurance to purchase; reinsurer sets prices

▶ Stackelberg game: reinsurer is the leader and the insurers are the followers

Reinsurer

Insurer 1 Insurer 2 Insurer n. . .
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Model

▶ Complete, filtered measurable space
(Ω,F ,F = (Ft)t∈[0,T ]) and n
equivalent probability measures
P1, . . . ,Pn

▶ Pk , k ∈ N := {1, . . . , n}, encapsulates
the k-th insurer’s belief of their losses

▶ Insurers maximize their expected
utility under Pk

▶ Reinsurer maximizes their expected
wealth under a probability measure
Qς , which accounts for the different
insurers’ models as well as uncertainty
about their accuracy
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Background

▶ Stackelberg games in reinsurance setting introduced by [CS18], [CS19]

▶ Adding ambiguity aversion as a scaled KL-penalty [HCW18a], [HCW18b]

▶ Reinvestment of profits by the reinsurer: [GVS20], [GLS23]

▶ Ambiguity where insurer and reinsurer maximize their expected wealth [Cao+22a],
[Cao+22b]

▶ Two reinsurers in a tree or chain form, one insurer: [Cao+23]

Our setting:

▶ n insurers who maximize expected utility and are ambiguity neutral

▶ A single reinsurer who maximizes expected wealth and is ambiguity averse
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Reinsurance contracts

Definition (Reinsurance Contract)

A reinsurance contract is characterised by a retention function r : R+ ×A → R+,
which is:

▶ non-decreasing in the first argument,

▶ satisfies 0 < r(z , a) ≤ z , for all z ∈ R+, a ∈ A,

and a corresponding reinsurance premium pR : A×R+ → R+.

For a tuple (a, c) ∈ A×R+, the reinsurer agrees to cover z − r(z , a) for a premium
pR(a, c), where c is the reinsurer’s safety loading.

Assumption
We consider retention functions that are continuous in the loss z and increasing and
almost everywhere differentiable in the control a.
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Reinsurance contracts

Example (Proportional reinsurance)

The insurer chooses the proportion a of the loss to retain:

r(z , a) = a z , a ∈ (0, 1] .

Example (Excess-of-loss insurance)

The insurer chooses the retention limit a, beyond which the reinsurer covers any excess
losses:

r(z , a) = min{a, z}, a ∈ R+ .
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Insurers

▶ Each insurer’s loss process follows a Cramér-Lundberg model
▶ Claims of insurer-k arrive according to a Poisson process with intensity λk ∈ R+

▶ Claim severity ∼ Fk(·) non-negative

▶ Insurer’s premium rate is given by the expected value principle with safety loading
θk > 0

▶ The insurer’s control of the retention function αk := (αt,k)t∈[0,T ] varies in time

▶ The k-th insurers’ wealth process Xk := (Xt,k)t∈[0,T ] is

Xt,k = X0,k +

∫ t

0

[
pIk − pRk (αu,k , ck)

]
du −

∫ t

0

∫ ∞

0
r(z ,αu,k)N(dz , du) .
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Reinsurer

▶ Reinsurer sets the reinsurance premium rate for insurer-k using the expected value
principle with deterministic safety loading ηk := (ηt,k)t∈[0,T ]:

pRk (αk ,ηt,k) := (1 + ηt,k)λk

∫ ∞

0

[
z − r(z ,αt,k)

]
Fk(dz) .

▶ The reinsurer’s wealth process Y := (Yt)t∈[0,T ] is

Yt = Y0 +
∑
k∈N

∫ t

0
pRk (αu,k ,ηu,k) du︸ ︷︷ ︸

aggregate premia

−
∫ t

0

∫ ∞

0

∑
k∈N

[
z − r(z ,αu,k)

]
N(dz , du)︸ ︷︷ ︸

aggregate losses

.
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Insurer’s Problem

Insurer-k ’s Optimization Problem

Insurer-k seeks the contract parameters that attain the supremum

sup
αk∈A

EPk

[
− 1

γk
e−γkXT ,k

]
.

Proposition

For k ∈ N and c ∈ R+ consider the following non-linear equation for a ∈ A∫ ∞

0
∂ar(z , a)

{
(1 + c)− eγk r(z,a)

}
Fk(dz) = 0

and denote by α†
k [c] its solution, if it exists.

Subject to a convexity condition, the process α∗
t,k := α†

k [ηt,k ], t ∈ [0,T ], is the
optimal insurer-k ’s control in feedback form.
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Reinsurer’s probability measure

Definition (Reinsurer’s compensator)

An admissible compensator for the reinsurer is a nonnegative, F-predictable random
field ς = (ςt(·))t∈[0,T ] such that, for all t ∈ [0,T ], ςt(·) : R+ → R+ and

EPk

[
exp

(∫ T

0

∫
R

[
1− ςt(z)

vk(z)

]2
N(dz , dt)

)]
< ∞, ∀k ∈ N .

We denote the set of admissible compensators by V.

Radon-Nikodym derivative from Pk to Qς :

dQς

dPk
:= exp

(∫ T

0

∫
R

log

(
ςt(z)

vk(z)

)
N(dz , dt)−

∫ T

0

∫
R

[
ςt(z)

vk(z)
− 1

]
vk(z) dz dt

)

E. Kroell July 5, 2023 10 / 16



Reinsurer’s Optimization Problem

Let insurer-k ’s demand for reinsurance be parameterised by α∗
k = α†[ηt,k ]. The

reinsurer seeks the contract parameters to attain

sup
η∈C

inf
ς∈V

EQς

[
YT +

1

ε

∑
k∈N

πkDKL(Qς ∥Pk)

]
,

where

▶ ε represents the reinsurer’s overall ambiguity aversion,

▶ πk ≥ 0, k ∈ N are weights satisfying
∑

k∈N πk = 1.
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Theorem

The Stackelberg equilibrium is (α∗,η∗, ς∗) where α∗ = (α†
1[η

∗
1 ], . . . ,α

†
n[η

∗
n ]) and

η∗ = (η∗
1 , . . . ,η

∗
n) are constants that satisfy a system of non-linear algebraic equations.

The optimal compensator is

ς∗(z ,α∗) = exp

{
ε
∑
k∈N

(
z − r(z ,α∗

k)
)} ∏

ℓ∈N
vℓ(z)

πℓ .
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Example: Excess-of-loss reinsurance



Two insurers with exponentially distributed losses

Suppose each insurer’s loss is exponentially distributed with scale parameter
ξk ∈ (0,min{ 1

γk
, 1
2ε}), and that they each have intensity λk > 0, for k = 1, 2.

Then the Stackelberg equilibrium is given by

ς∗(z) = vg (z) exp
(
ε
[
(z −α∗

1)+ + (z −α∗
2)+
])

,

α∗
k =

1

γk
log

( ∫∞
α∗

k
ς∗(z)dz

λk e
−α∗

k /ξk [1− γk ξk ]

)
, k = 1, 2 ,

η∗
k = eγkα

∗
k − 1 , k = 1, 2 ,

where vg is the weighted geometric mean of the insurers’ compensators.
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Thank you for your attention!
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