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Introduction

Q P1

P2

P3

P4

An agent has multiple models/probability measures
P1,P2,P3,P4.

The agent has to make a decision optimally
accounting for ambiguity about these models.

Agent must choose a model Q to optimize under.

In our setting:
I agent = insurer
I decision = risk sharing
I penalization = monotone mean variance, i.e.,

chi-squared penalty
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Introduction

I Insurer in a non-life insurance market faces insurance losses over a finite horizon
[0,T ].

I Insurer can share their risk with another agent, the counterparty, by ceding
them a portion of their loss in return for a premium payment.

I Insurer has multiple models for the loss distribution: P1, . . . ,Pn,PC and chooses a
model Q to optimize the risk sharing under; counterparty sets premium under
their model, PC .
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Probabilistic set-up

I Assume a complete, filtered measurable space (⌦,F ,F = (Ft)t2[0,T ]) and n + 1
equivalent probability measures P1, . . . ,Pn, PC

I N(d⇠, dt) is a Poisson random measure driving the insurance losses in the market.
I Under a measure Pk for k 2 I, I := {1, . . . , n,C}, N has Pk-compensator

⌫k(d⇠, dt) = ⌫k(d⇠)dt.
I Define the Pk-compensated PRM by

ÑPk (d⇠, dt) = N(d⇠, dt)� ⌫k(d⇠)dt .

I Each compensator admits a density vk(⇠), i.e., ⌫k(d⇠) = vk(⇠)d⇠ for k 2 I.
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Probabilistic set-up

Assumptions
Z

R+

v2
C(⇠)

vk(⇠)
d⇠ < 1 for k 2 I ,

Z

R+

v3
C(⇠)

vj(⇠)vk(⇠)
d⇠ < 1 for j, k 2 I .

Example
I Assume that ⌫k(d⇠) is compound Poisson such that vk(⇠) = �k fk(⇠), where

�k > 0 and fk is the density of a Gamma distribution with shape mk > 0 and
scale �k > 0,

I The first assumption is satisfied if 2mC > mk and 2�k > �C for all k 2 I \ {C}.
I The second assumption is satisfied if for all j, k 2 I \ {C}, 3mC > mj + mk and

3�j�k > �C(�j + �k).
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Insurer’s surplus
I The insurer’s wealth process follows a Cramér-Lundberg model with constant

premium rate c > 0:

XCL
t = x + ct �

Z t

0

Z

R+

⇠ N(d⇠, ds) .

I Insurer cedes a portion ↵t(⇠) of the loss ⇠ 2 R+ to the counterparty.

Definition: admissible risk sharing strategies
We define the set of admissible risk sharing strategies, A, as those strategies ↵t that
are F-predictable random fields satisfying for t 2 [0,T ],

EPC

Z t

0

Z

R+

|↵s(⇠)|2 ⌫C (d⇠) ds
�
< 1 and

EPC

Z t

0

Z

R+

[⇠ �↵s(⇠)]
2 ⌫C (d⇠) ds

�
< 1 .
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Insurer’s surplus

I The counterparty charges the expected value premium principle with safety
loading ⌘ > 0: (1 + ⌘)

R
R+
↵t(⇠) ⌫C(d⇠).

I Assume that the risk sharing premium is such that c < (1 + ⌘)
R1

0 ⇠ ⌫C(d⇠).
I The insurer’s wealth process X := (Xt)t2[0,T ] is

dX↵
t =

"
c

| {z }
insurer’s premium

� (1 + ⌘)

Z

R+

↵t(⇠) ⌫C(d⇠)
| {z }

counterparty’s premium

#
dt �

Z

R+

[⇠ �↵t(⇠)]N(d⇠, dt)
| {z }

losses retained by insurer

.
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Monotone mean variance with model ambiguity
Recall: the insurer has n + 1 models/probability measures P1, . . . ,Pn,PC .

Insurer penalizes model ambiguity using the
�2-divergence:

�2(Q kP) := EP

"✓dQ
dP

◆2
� 1
#
.

Q P1

P2

P3

P4

Optimization Problem
The insurer seeks the solution to the following problem:

sup
↵2A

inf
Q2�2

 
EQ[X↵

T ] +
1
2✓
X

k2I
⇡k EPk

"✓ dQ
dPk

◆2
� 1
#!

,

where ✓ > 0 and ⇡k � 0, k 2 I := {1, . . . , n,C} are given weights such thatP
k2I ⇡k = 1.
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The monotone mean-variance criterion [Maccheroni et al., 2009]

JMV
✓ [X ] = EP[X ]� ✓

2VarP(X)

JMMV
✓ [X ] := min

Q2�2(P)

 
EQ[X ] +

1
2✓E

P

"✓dQ
dP

◆2
� 1
#!

where �2(P) = {Q ⌧ P : EP
⇣

dQ
dP

⌘2�
< 1}.

Properties of MMV [Maccheroni et al., 2009]
I Agrees with MV criterion where it is monotone
I Best possible monotone approximation of the MV criterion outside of where it is

monotone
I Unlike MV, MMV preserves second-order stochastic dominance
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Related literature
I Recent approaches to mean-variance problems in insurance:

I Sub-game Nash perfect equilibrium approach: [D. Li et al., 2017], [Chen and Shen,
2019], [Chen et al., 2021]

I Time consistency using an auxiliary process: [Shen and Zou, 2021]

I Monotone mean-variance in optimal investment/insurance problems:
I Stochastic factor model: [Trybuła and Zawisza, 2019], [Y. Li et al., 2024]
I Constrained MMV: [Shen and Zou, 2022], [Hu et al., 2023]
I MMV in insurance: [B. Li and Guo, 2021], [B. Li et al., 2024], [Shi and Xu, 2024]

I Multiple models
I Optimal reinsurance: [Kroell et al., 2024]
I Diffusion setting: [Jaimungal and Pesenti, 2024]

E. Kroell July 31, 2025 10 / 24



Chapter 4: Optimization Problem

Optimization Problem
The insurer seeks the solution to the following problem:

sup
↵2A

inf
Q2�2

 
EQ[X↵

T ] +
1
2✓
X

k2I
⇡k EPk

"✓ dQ
dPk

◆2
� 1
#!

,

where ✓ > 0 and ⇡k � 0, k 2 I := {1, . . . , n,C} are given weights such thatP
k2I ⇡k = 1.

Radon-Nikodym derivatives:
Define the stochastic processes {Z�

k,t}t2[0,T ],k2I , for all k 2 I:
dZ�

k,t = Z�
k,t�

Z

R+

[vk(⇠)� �t(⇠)] d⇠dt � Z�
k,t�

Z

R+


1 � �t(⇠)

vk(⇠)

�
N(d⇠, dt) ,

Z�
k,0 = 1 .

E. Kroell July 31, 2025 11 / 24



Chapter 4: Optimization Problem

Optimization Problem
The insurer seeks the solution to the following problem:

sup
↵2A

inf
�2B

EQ�

"
X↵

T +
1
2✓
X

k2I
⇡k
⇣

Z�
k,T � 1

⌘#
,

where ✓ > 0 and ⇡k � 0, k 2 I := {1, . . . , n,C} are given weights such thatP
k2I ⇡k = 1.

Radon-Nikodym derivatives:
Define the stochastic processes {Z�

k,t}t2[0,T ],k2I , for all k 2 I:
dZ�

k,t = Z�
k,t�

Z

R+

[vk(⇠)� �t(⇠)] d⇠dt � Z�
k,t�

Z

R+


1 � �t(⇠)

vk(⇠)

�
N(d⇠, dt) ,

Z�
k,0 = 1 .
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Auxiliary processes

I Define B to be set the of F-predictable random fields �t(⇠) satisfying for
t 2 [0,T ] and for all k 2 I

EPk

"Z t

0

Z

R+


1 � �s(⇠)

vk(⇠)

�2
⌫k(d⇠)ds

#
< 1 .

Definition: admissible compensators
Let B denote the processes � 2 B such that for all k 2 I,

EPk
h
Z�

k,T

i
= 1 and EPk

⇣
Z�

k,T

⌘2�
< 1 .
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Theorem (Optimal Controls)
The optimal controls in feedback form are

↵⇤(t, ⇠, z) = ⇠ � 1
✓

X

k2I
⇡k zk `k(T � t)


(1 + ⌘)

vC(⇠)
vk(⇠)

� 1
�

�⇤(⇠) = (1 + ⌘) vC(⇠) ,

where
`k(t) = exp

 
t
Z

R+


1 � (1 + ⌘)

vC(⇠)
vk(⇠)

�2
⌫k(d⇠)

!
,

and the insurer’s value function is

�(t, x , z) = x +
X

k2I

⇡k
2✓ zk `k(T � t)� 1

2✓ �

(1 + ⌘)

Z

R+

⇠ ⌫C(d⇠)� c
�
(T � t) .
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Processes Under Optimal Controls

Proposition
For t 2 [0,T ],

Z⇤
k,t = exp

✓
t
Z

R+

[vk(⇠)� (1 + ⌘)vC (⇠)] d⇠ +
Z t

0

Z

R+

ln

✓
(1 + ⌘)

vC (⇠)

vk(⇠)

◆
N(d⇠, ds)

◆
, k 2 I ,

X⇤
t = x +


c � (1 + ⌘)

Z

R+

⇠ ⌫C (d⇠)
�

t + 1
✓

X

k2I
⇡k `k(T )

⇥
1 � `k(�t)Z⇤

k,t
⇤
.
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Sketch of proof: optimal controls
↵⇤, �⇤, J derived using the Hamilton-Jacobi-Bellman-Isaacs equation.
Are ↵⇤ and �⇤ admissible?

Lemma
For k 2 I : EPk [Z⇤

k,T ] = 1 , EPk [(Z⇤
k,T )

2] = `k(T ) < 1 , EPC [(Z⇤
k,T )

2] < 1 .

Then we can show that:

EPC

Z t

0

Z

R+

|↵⇤(s, ⇠,Z⇤
s )|2 ⌫C (d⇠) ds

�
< 1

EPC

Z t

0

Z

R+

[⇠ �↵⇤(s, ⇠,Z⇤
s )]

2 ⌫C (d⇠) ds
�
< 1

9
>>>=

>>>;
↵⇤ 2 A

Z t

0

Z

R+


1 �

�⇤
s (⇠)

vk(⇠)

�2
⌫k(d⇠)ds < 1

)
�⇤ 2 B
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Motivating data example

I Recent open-access insurance data set [Segura-Gisbert et al., 2024a,b], 105,555
observations, giving policy-level data on annual motor insurance policies of a
Spanish non-life insurer for policies started in the years 2015–2018

I Using cross-validation, estimate 100 models Pk , k = 1, . . . , 100 from the data set.
For each estimate, we sample 50% of the data and then estimate the parameters.

I Assume that under all models k 2 I:
I the claim arrival rate is Poisson distributed with rate �k > 0,
I the severity distribution is Gamma distributed with shape parameter mk > 0 and

scale parameter ✓k > 0 .

I Estimate arrival rate and severity distribution by maximum likelihood.
I Estimate the counterparty’s model, PC , using the full dataset.
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Estimated parameters

600

650

700

0.57 0.59 0.61

m (shape)

�
(s
ca
le
)

(a) Shape versus scale

600

650

700

0.51 0.52 0.53

� (arrival rate)

�
(s
ca
le
)

(b) Arrival rate versus scale

0.57

0.59

0.61

0.51 0.52 0.53

� (arrival rate)

m
(s
h
ap

e)

(c) Arrival rate versus shape

E. Kroell July 31, 2025 17 / 24



KDE of XT under different scenarios

PC Q⇤
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One reference model

If there is only one model, P, then the MMV criterion with model ambiguity reduces to
the original MMV criterion [Maccheroni et al., 2009]

Proposition
The insurer’s optimal controls are

↵⇤(t, ⇠,Zt) = ⇠ � ⌘

✓
e�⌘2(T�t)Zt ,

�⇤(⇠) = (1 + ⌘) v(⇠) .

E. Kroell July 31, 2025 20 / 24



Explicit solution

Proposition
Let Mt =

R t
0
R
RN(d⇠, dt). Then for t 2 [0,T ],

Zt = (1 + ⌘)Mt e�⌘�t ,

Xt = �1
✓

e�⌘2(T�t)Zt � (⌘ � �)�µt + 1
✓

e�⌘2T .

Remark. For t 2 (0,T ],
Corr(Xt ,Zt) = �1 .

E. Kroell July 31, 2025 21 / 24



Paths: one reference model
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Rewriting the optimal strategy
Recent work has shown that in many continuous-time investment problems, the
optimal strategies for MMV and MV coincide.
I e.g., [Trybuła and Zawisza, 2019], [Strub and D. Li, 2020], [Shen and Zou, 2022],

[Y. Li et al., 2024]

If the strategies coincide, we expect to be able to rewrite this to depend on Xt � x or
similar.

Restricting to one model: the optimal strategy is

↵⇤(t, ⇠,Z⇤
t ) = ⇠ � ⌘

✓
e�⌘2(T�t)Z⇤

t ,↵⇤(t, ⇠,X⇤
t ) = ⇠ � ⌘

✓
�X⇤

t + x +


(1 + ⌘)

Z

R+

⇠ ⌫(d⇠)� c
�

t + 1
✓

e�⌘2T
◆

.

Note: we cannot invert this relationship for X when there are multiple Zs.
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Contributions

I We introduce a new criterion that generalizes the monotone mean-variance
preferences to multiple reference models

I We derive explicit solutions for the insurer’s optimal risk-sharing strategy,
optimal decision measure, and their wealth process

I We prove that the strategy we obtain is admissible and that the value function
satisfies the appropriate verification conditions

I We determine the mean and variance of the insurer’s wealth process X , and
show that the model penalization parameter ✓ penalizes the variance of X

I We illustrate the method with recent open-access non-life insurance data.
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Thank you for your attention!

Download the
pre-print:
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